Quickstart Examples
Factoring Integers
To factor large integers using Algebraeon
use algebraeon::sets::structure::ToStringSignature;
use algebraeon::{nzq::Natural, rings::natural::factorization::factor};
use algebraeon::{
rings::natural::factorization::NaturalCanonicalFactorizationStructure,
sets::structure::MetaType,
};
use std::str::FromStr;
let n = Natural::from_str("706000565581575429997696139445280900").unwrap();
let f = factor(n.clone()).unwrap();
println!(
"{} = {}",
n,
Natural::structure().factorizations().to_string(&f)
);;
/*
Output:
706000565581575429997696139445280900 = 2^2 × 5^2 × 6988699669998001 × 1010203040506070809
*/
Algebraeon implements Lenstra elliptic-curve factorization for quickly finding prime factors with around 20 digits.
Factoring Polynomials
Factor the polynomials \(x^2 - 5x + 6\) and \(x^{15} - 1\).
use algebraeon::rings::{polynomial::*, structure::*};
use algebraeon::nzq::Integer;
let x = &Polynomial::<Integer>::var().into_ergonomic();
let f = (x.pow(2) - 5*x + 6).into_verbose();
println!("f(λ) = {}", f.factor().unwrap());
/*
Output:
f(λ) = 1 * ((-2)+λ) * ((-3)+λ)
*/
let f = (x.pow(15) - 1).into_verbose();
println!("f(λ) = {}", f.factor().unwrap());
/*
Output:
f(λ) = 1 * ((-1)+λ) * (1+λ+λ^2) * (1+λ+λ^2+λ^3+λ^4) * (1+(-1)λ+λ^3+(-1)λ^4+λ^5+(-1)λ^7+λ^8)
*/
so
\[x^2 - 5x + 6 = (x-2)(x-3)\]
\[x^{15}-1 = (x-1)(x^2+x+1)(x^4+x^3+x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)\]
Linear Systems of Equations
Find the general solution to the linear system
\[a \begin{pmatrix}3 \\ 4 \\ 1\end{pmatrix} + b \begin{pmatrix}2 \\ 1 \\ 2\end{pmatrix} + c \begin{pmatrix}1 \\ 3 \\ -1\end{pmatrix} = \begin{pmatrix}5 \\ 5 \\ 3\end{pmatrix}\]
for integers \(a\), \(b\) and \(c\).
use algebraeon::nzq::Integer;
use algebraeon::rings::module::finitely_free_module::RingToFinitelyFreeModuleSignature;
use algebraeon::rings::matrix::Matrix;
use algebraeon::sets::structure::MetaType;
let m = Matrix::<Integer>::from_rows(vec![vec![3, 4, 1], vec![2, 1, 2], vec![1, 3, -1]]);
let y = vec![5.into(), 5.into(), 3.into()];
for x in Integer::structure()
.free_module(3)
.affine_subsets()
.affine_basis(&m.row_solution_set(&y))
{
println!("{:?}", x);
}
/*
Output:
[Integer(0), Integer(2), Integer(1)]
[Integer(1), Integer(1), Integer(0)]
*/
so two solutions are given by \((a, b, c) = (0, 2, 1)\) and \((a, b, c) = (1, 1, 0)\) and every solution is a linear combination of these two solutions; The general solution is given by all \((a, b, c)\) such that
\[\begin{pmatrix}a \\ b \\ c\end{pmatrix} = s\begin{pmatrix}0 \\ 2 \\ 1\end{pmatrix} + t\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}\]
where \(s\) and \(t\) are integers such that \(s + t = 1\).
Complex Root Isolation
Find all complex roots of the polynomial \[f(x) = x^5 + x^2 - x + 1\]
use algebraeon::rings::{polynomial::*, structure::*};
use algebraeon::nzq::Integer;
let x = &Polynomial::<Integer>::var().into_ergonomic();
let f = (x.pow(5) + x.pow(2) - x + 1).into_verbose();
// Find the complex roots of f(x)
for root in f.all_complex_roots() {
println!("root {} of degree {}", root, root.degree());
}
/*
Output:
root ≈-1.328 of degree 3
root ≈0.662-0.559i of degree 3
root ≈0.662+0.559i of degree 3
root -i of degree 2
root i of degree 2
*/
Despite the output, the roots found are not numerical approximations. Rather, they are stored internally as exact algebraic numbers by using isolating boxes in the complex plane.
Factoring Multivariable Polynomials
Factor the following multivariable polynomial with integer coefficients
\[f(x, y) = 6x^4 - 6x^3y^2 + 6xy - 6x - 6y^3 + 6y^2\]
use algebraeon::{nzq::Integer, rings::{polynomial::*, structure::*}};
let x = &MultiPolynomial::<Integer>::var(Variable::new("x")).into_ergonomic();
let y = &MultiPolynomial::<Integer>::var(Variable::new("y")).into_ergonomic();
let f = (6 * (x.pow(4) - x.pow(3) * y.pow(2) + x * y - x - y.pow(3) + y.pow(2))).into_verbose();
println!("f(x, y) = {}", f.factor().unwrap());
/*
Output:
f(x, y) = 1 * ((3)1) * ((2)1) * (x+(-1)y^2) * (x^3+y+(-1)1)
*/
so the factorization of \(f(x, y)\) is
\[f(x, y) = 2 \times 3 \times (x^3 + y - 1) \times (y^2 - x)\]
P-adic Root Finding
Find the \(2\)-adic square roots of \(17\).
use algebraeon::nzq::{Natural, Integer};
use algebraeon::rings::{polynomial::*, structure::*};
let x = Polynomial::<Integer>::var().into_ergonomic();
let f = (x.pow(2) - 17).into_verbose();
for mut root in f.all_padic_roots(&Natural::from(2u32)) {
println!("{}", root.truncate(&20.into()).string_repr()); // Show 20 2-adic digits
}
/*
Output:
...00110010011011101001
...11001101100100010111
*/
Truncating to the last 16 bits it can be verified that, modulo \(2^{16}\), the square of these values is \(17\).
let a = 0b0010011011101001u16;
assert_eq!(a.wrapping_mul(a), 17u16);
let b = 0b1101100100010111u16;
assert_eq!(b.wrapping_mul(b), 17u16);
Enumerating a Finitely Generated Group
Let \(G\) be the finitely generated group generated by \(3\) generators \(a\), \(b\), \(c\) subject to the relations \(a^2 = b^2 = c^2 = (ab)^3 = (bc)^5 = (ac)^2 = e\).
\[G = \langle a, b, c : a^2 = b^2 = c^2 = (ab)^3 = (bc)^5 = (ac)^2 = e \rangle\]
Using Algebraeon, \(G\) is found to be a finite group of order \(120\):
use algebraeon::groups::free_group::todd_coxeter::*;
let mut g = FinitelyGeneratedGroupPresentation::new();
// Add the 3 generators
let a = g.add_generator();
let b = g.add_generator();
let c = g.add_generator();
// Add the relations
g.add_relation(a.pow(2));
g.add_relation(b.pow(2));
g.add_relation(c.pow(2));
g.add_relation((&a * &b).pow(3));
g.add_relation((&b * &c).pow(5));
g.add_relation((&a * &c).pow(2));
// Count elements
let (n, _) = g.enumerate_elements();
assert_eq!(n, 120);
Jordan Normal Form of a Matrix
use algebraeon::nzq::{Rational};
use algebraeon::rings::{matrix::*, isolated_algebraic::*};
use algebraeon::sets::structure::*;
// Construct a matrix
let a = Matrix::<Rational>::from_rows(vec![
vec![5, 4, 2, 1],
vec![0, 1, -1, -1],
vec![-1, -1, 3, 0],
vec![1, 1, -1, 2],
]);
// Put it into Jordan Normal Form
let j = MatrixStructure::new(ComplexAlgebraic::structure()).jordan_normal_form(&a);
j.pprint();
/*
Output:
/ 2 0 0 0 \
| 0 1 0 0 |
| 0 0 4 1 |
\ 0 0 0 4 /
*/
Computing Discriminants
Algebraeon can find an expression for the discriminant of a polynomial in terms of the polynomials coefficients.
use algebraeon::rings::polynomial::*;
use algebraeon::nzq::Integer;
let a_var = Variable::new("a");
let b_var = Variable::new("b");
let c_var = Variable::new("c");
let d_var = Variable::new("d");
let e_var = Variable::new("e");
let a = MultiPolynomial::<Integer>::var(a_var);
let b = MultiPolynomial::<Integer>::var(b_var);
let c = MultiPolynomial::<Integer>::var(c_var);
let d = MultiPolynomial::<Integer>::var(d_var);
let e = MultiPolynomial::<Integer>::var(e_var);
let p =
Polynomial::<MultiPolynomial<Integer>>::from_coeffs(vec![c.clone(), b.clone(), a.clone()]);
println!("p(λ) = {}", p);
println!("disc(p) = {}", p.discriminant().unwrap());
println!();
let p = Polynomial::<MultiPolynomial<Integer>>::from_coeffs(vec![
d.clone(),
c.clone(),
b.clone(),
a.clone(),
]);
println!("p(λ) = {}", p);
println!("disc(p) = {}", p.discriminant().unwrap());
println!();
let p = Polynomial::<MultiPolynomial<Integer>>::from_coeffs(vec![
e.clone(),
d.clone(),
c.clone(),
b.clone(),
a.clone(),
]);
println!("p(λ) = {}", p);
println!("disc(p) = {}", p.discriminant().unwrap());
/*
Output:
p(λ) = (c)+(b)λ+(a)λ^2
disc(p) = (-4)ac+b^2
p(λ) = (d)+(c)λ+(b)λ^2+(a)λ^3
disc(p) = (-27)a^2d^2+(18)abcd+(-4)ac^3+(-4)b^3d+b^2c^2
*/
so
\[\mathop{\text{disc}}(ax^2 + bx + c) = b^2 - 4ac\]
\[\mathop{\text{disc}}(ax^3 + bx^2 + cx + d) = b^2c^2 - 4ac^3 - 4b^3d - 27a^2d^2 + 18abcd\]